skip to main content


Search for: All records

Creators/Authors contains: "Fuller, Gary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    This study presents a detailed analysis of the GAL045.804 − 0.356 massive star-forming clump. A high-angular resolution and sensitivity observations were conducted using MeerKAT at 1.28 GHz and ALMA interferometer at 1.3 mm. Two distinct centimetre radio continuum emissions (source A and source B) were identified within the clump. A comprehensive investigation was carried out on source A, the G45.804 − 0.355 star-forming region (SFR) due to its association with Extended Green Object (EGO), 6.7 GHz methanol maser and the spatial coincidence with the peak of the dust continuum emission at 870 µm. The ALMA observations revealed seven dense dust condensations (MM1–MM7) in source A. The brightest (Sν ∼ 87 mJy) and massive main dense core, MM1, was co-located with the 6.7 GHz methanol maser. Explorations into the kinematics revealed gas motions characterized by a velocity gradient across the MM1 core. Furthermore, molecular line emission showed the presence of an extended arm-like structure, with a physical size of 0.25 pc × 0.18 pc (∼ 50 000 au × 30 000 au) at a distance of 7.3 kpc. Amongst these arms, two arms were prominently identified in both the dust continuum and some of the molecular lines. A blue-shifted absorption P-Cygni profile was seen in the H2CO line spectrum. The findings of this study are both intriguing and new, utilizing data from MeerKAT and ALMA to investigate the characteristics of the AGAL45 clump. The evidence of spiral arms, the compact nature of the EGO and < 2 km s−1 velocity gradient are all indicative of G45.804 − 0.355 being oriented face-on.

     
    more » « less
  2. ABSTRACT

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 85.69- and 99.02-GHz continuum emission and H42α and H40α lines emission from the central 1 kpc of NGC 1808. These forms of emission are tracers of photoionizing stars but unaffected by dust obscuration that we use to test the applicability of other commonly star formation metrics. An analysis of the spectral energy distributions shows that free–free emission contributes about 60–90 per cent of the continuum emission in the 85–100-GHz frequency range, dependent on the region. The star formation rate (SFR) derived from the ALMA free–free emission is 3.1 ± 0.3 M⊙ yr−1. This is comparable to the SFRs measured from the infrared emission, mainly because most of the bolometric energy from the heavily obscured region is emitted as infrared emission. The radio 1.5-GHz emission yields an SFR 25 per cent lower than the ALMA value, probably because of the diffusion of the electrons producing the synchrotron emission beyond the star-forming regions. The SFRs measured from the extinction-corrected H α line emission are about 40–65 per cent of the SFR derived from the ALMA data, likely because this metric was not calibrated for high-extinction regions. Some SFRs based on extinction-corrected ultraviolet emission are similar to those from ALMA and infrared data, but given that the ultraviolet terms in the extinction correction equations are very small, these metrics seem inappropriate to apply to this dusty starburst.

     
    more » « less
  3. null (Ed.)
  4. Abstract We have obtained sensitive dust continuum polarization observations at 850 μ m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B -fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field ( B -field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B -field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μ G, respectively. These cores show distinct mean B -field orientations. The B -field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B -field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B -field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B -field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B -field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B -field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B -field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux. 
    more » « less